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Resum 

Aquest projecte presenta el desenvolupament d’una aplicació de despertador intel·ligent 
per a rellotges Garmin, dissenyada per despertar l’usuari en el moment òptim del seu cicle 
de son, dins d’una finestra horària preestablerta, per tal de minimitzar la sensació de fatiga 
o desorientació en despertar-se. 

El projecte inclou una investigació exhaustiva sobre els factors fisiològics que contribueixen 
a un despertar més efectiu. Es farà una anàlisi de dades com la freqüència cardíaca, la 
variabilitat de la freqüència cardíaca i el moviment, recollides pels sensors del rellotge 
durant diverses nits en diferents persones. 

S’entrenarà un model d’aprenentatge automàtic LSTM (Long Short-Term Memory) per a 
distingir entre les fases de son lleuger i no lleuger (REM o profund). El model es refinarà 
de manera iterativa per maximitzar la precisió evitant el sobreajustament. 

Un cop identificat el patró òptim per despertar-se, es desenvoluparà una aplicació en 
Monkey C pels rellotges Garmin Forerunner 55 que processi les dades dels sensors i activi 
l’alarma dins la finestra de 30 minuts escollida per l’usuari, en el moment més adequat. 
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Resumen 

Este proyecto presenta el desarrollo de una aplicación de despertador inteligente para 
relojes Garmin, diseñada para despertar al usuario en el momento óptimo de su ciclo de 
sueño, dentro de un intervalo de tiempo preestablecido, con el fin de minimizar la sensación 
de fatiga o desorientación al despertar. 

El proyecto incluye una investigación exhaustiva sobre los factores fisiológicos que 
contribuyen a un despertar más efectivo. Se analizarán datos como la frecuencia cardíaca, 
la variabilidad de la frecuencia cardíaca y el movimiento, recogidos por los sensores del 
reloj durante varias noches en diferentes personas. 

Se entrenará un modelo de aprendizaje automático LSTM (Long Short-Term Memory) para 
distinguir entre las fases de sueño ligero y no ligero (REM o profundo). El modelo se 
refinará de forma iterativa para maximizar la precisión evitando el sobreajuste. 

Una vez identificado el patrón óptimo para despertar, se desarrollará una aplicación en 
Monkey C para los relojes Garmin Forerunner 55 que procese los datos de los sensores y 
active la alarma dentro de la ventana de 30 minutos elegida por el usuario, en el momento 
más adecuado. 



Development of Wake-Up Optimization Software  Page 5 

 

Abstract 

This project presents the development of a smart alarm application for Garmin 
smartwatches, designed to wake the user at the optimal point in their sleep cycle, within a 
preset time window, to minimize feelings of fatigue or grogginess upon waking. 

The work includes an in-depth investigation into the physiological factors that contribute to 
a more effective wake-up experience. Data such as heart rate, heart rate variability, and 
movement—collected from the watch's sensors over several nights—will be analyzed 
across multiple individuals. 

An LSTM (Long Short-Term Memory) machine learning model will be trained to distinguish 
between light and non-light (REM or deep) sleep phases. The model will be refined 
iteratively to maximize accuracy while avoiding overfitting. 

Once the optimal wake-up pattern is identified, a Monkey C application for the Garmin 
Forerunner 55 will be developed to process sensor input and trigger the alarm during the 
user's chosen 30-minute window at the most suitable moment. 
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Abbreviations and Symbols 

Adam: Adaptive Moment Estimation 

AI: Artificial Intelligence 

API: Application Programming Interface 

APP: Application 

CNMC: Comisión Nacional de los Mercados y la Competencia (National Commission of 
Markets and Competition) 

CO2: Carbon Dioxide 

CSV: Comma-Separated Values 

ECG: Electrocardiogram 

EEG: Electroencephalogram 

EMG: Electromyogram 

EOG: Electrooculogram 

FIT: File Interchange Type (commonly refers to Garmin's Flexible and Interoperable Data 
Transfer format in fitness tracking) 

HR: Heart Rate 

HRV: Heart Rate Variability 

IBI: Inter-Beat Interval 

IDE: Integrated Development Environment 

LED: Light-Emitting Diode 

LSTM: Long Short-Term Memory 

NREM: Non-Rapid Eye Movement 

PPG: Photoplethysmography 

PSG: Polysomnography 

ReLU: Rectified Linear Unit 
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REM: Rapid Eye Movement 

RMSSD: Root Mean Square of Successive Differences 

RNN: Recurrent Neural Network 

RR: Inter-beat Interval 

SDG: Sustainable Development Goal 

SDNN: Standard Deviation of Normal-to-Normal Intervals 

SDK: Software Development Kit 

SMOTE: Synthetic Minority Oversampling Technique 

VO2 MAX: Maximum Volume of Oxygen Consumption 
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1. Preface 

Almost one year ago, two of my friends and I, all industrial engineers, bought our first Garmin 
smartwatches. We found them fascinating, especially in today’s data-driven world. Simply 
wearing a watch all day could provide so many insights into your health: your resting heart 
rate, stress levels, VO2 max, and more. Among all the insights, the ones related to sleep 
piqued our curiosity the most. Every morning, we’d check how we slept—how many sleep 
cycles we had, how the sleep stages were distributed in each cycle, how our heart rate varied 
during the night, and how it differed across nights. For instance, we noticed that training 
intensely for a marathon significantly lowered our resting heart rates, while being ill prevented 
us from resting well, as our heart rates would steadily increase throughout the night. 

Our curiosity didn’t stop there. That same summer, we spent the month of July studying 
Garmin and sleep. My friends and I built a platform that used Garmin data to provide even 
more detailed sleep information than what Garmin offered. We invented a scoring system to 
measure sleep quality and created various visualizations to display the data in more 
informative ways. I learned a lot during this process, particularly as I focused on embedded 
software development. My ultimate goal was to develop the Garmin sleep alarm that I’m 
presenting in this thesis. However, starting with little knowledge about Garmin and 
programming, one summer wasn’t enough to achieve that. Still, I learned how to build apps 
for Garmin and even developed a simple pink watch face. Beyond the technical skills, I 
enjoyed the process and discovered what I truly love about engineering: the ability to learn 
and create anything. 

After that summer, I was left with an itch. I knew I’d return to the project someday, and what 
better time than now, as the final step to becoming a real engineer? 
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2. Introduction 

2.1. Motivation 

"Prevention is better than cure", a principle I have always believed in. In past decades, 
society was unaware of the dangers of smoking, excessive sugar, or alcohol consumption. 
Today, despite strong evidence, many still overlook the long-term consequences of 
unhealthy habits until medical intervention becomes necessary. However, it is often simple, 
natural routines, such as regular exercise and quality sleep, that contribute most to a longer, 
healthier life. 

In recent years, there has been a growing shift toward healthier lifestyles. Technologies 
such as fitness tracking apps (e.g., Strava) and wearable devices (e.g., Garmin 
smartwatches) have transformed health practices into measurable and even social 
experiences. They have made physical activity and sleep monitoring more accessible and 
engaging. 

With this project, I aim to further highlight the importance of sleep, an often overlooked yet 
fundamental pillar of health. Specifically, I will focus on the waking phase: designing a 
system that supports a more natural, biologically-aligned awakening by identifying the 
optimal moment to start the day. This contributes not only to improved well-being but also 
to better daily performance and long-term health. 

 

2.2. Scope 

During the course of this thesis, I encountered several limitations, which I hope to overcome 
in future iterations of this work. Nevertheless, I developed the best possible version of the 
system within the constraints of the available resources. 

One major limitation was the inability to access the Garmin API, which prevented real-time 
transmission of sensor data to a high-capacity external device. This restricted my ability to 
implement a machine learning model that could continuously learn from the user's sleep 
patterns and personalize the waking experience over time. To address this, I simplified the 
approach and designed a lightweight algorithm capable of running locally on the 
smartwatch, taking into account its limited processing power and storage. 

Another significant constraint involved the detection of sleep phases. Ideally, accurate 
identification of sleep stages requires brain wave data (EEG), typically collected in a 
laboratory setting. Without access to such facilities, I relied on Garmin Forerunner 55’s built-
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in sleep stage detection algorithm. According to available data, this algorithm achieves an 
overall accuracy of 69.7%, with a sensitivity (proportion of actual positive cases) of 95.8% 
for detecting sleep and a specificity (proportion of actual negative cases) of 73.4% for 
detecting wakefulness [1]. While this level of accuracy introduces a margin of error, it 
remains the most feasible solution given the available sensors, which do not include direct 
brain activity measurement. 

 

2.3. Objectives 

The primary goal of this project is to develop a smartwatch alarm application that wakes 
users at the ideal point in their sleep cycle, using physiological data (heart rate, heart rate 
variability and movement) to ensure adaptability to individual users. To achieve this, the 
following specific objectives will be addressed: 

• Understand sleep cycles by analyzing data from Garmin sensors (accelerometer, 
heart rate sensor) and identify patterns using machine learning models. 

• Conduct a theoretical analysis of sleep physiology and existing research to identify 
the ideal sleep stage for waking. 

• Design a machine learning-based algorithm to predict the optimal wake-up time, 
subsequently optimized for the limited processing capacity of a smartwatch. 

• Develop an intuitive and user-friendly wake-up alarm application for Garmin devices 
using Monkey C. 

• Publish the application on the Connect IQ platform, making it accessible for all 
Garmin users to download and use. 

• Ultimately, contribute to a healthier society by promoting better sleep quality through 
accessible, personalized wake-up solutions. 
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3. Theory or Theoretical background 
 

3.1. Theoretical Foundations 

3.1.1. Introduction to Sleep 

Sleep is a complex and dynamic biological process essential for maintaining physical and 
mental health. It is characterized by a reversible state of reduced responsiveness to 
external stimuli, accompanied by distinct physiological changes such as alterations in brain 
wave activity, breathing, heart rate, and body temperature. 

Sleep regulation is governed by two primary mechanisms: the circadian rhythm and the 
sleep pressure. The circadian rhythm, an intrinsic biological process, is observed in 
organisms with lifespans exceeding seven days. This rhythm operates on an approximately 
24-hour cycle and functions independently of solar cycles. However, exposure to sunlight 
facilitates synchronization of the circadian rhythm to a precise 24-hour period, recalibrating 
the internal biological clock daily. 

The circadian rhythm oscillates independently of sleep history, maintaining its cycle 
regardless of sleep duration or deprivation. This independence underlies the phenomenon 
of jetlag, where transmeridian travel disrupts alignment between the internal circadian 
rhythm and the external environment. Consequently, individuals experience difficulty 
remaining awake during periods when the circadian rhythm promotes sleep, or difficulty 
sleeping when the rhythm promotes wakefulness, irrespective of prior wakefulness 
duration.  

The circadian rhythm fluctuations occur at distinct times of the day depending of the person, 
giving rise to three primary chronotypes: morning types, evening types, and intermediate 
types. Morning types are characterized by earlier peak alertness, while evening types 
display later peak alertness. Societal structures often disadvantage evening types, whose 
circadian rhythms predispose them to sleep onset between 1:00 AM and 2:00 AM and 
awakening between 9:00 AM and 10:00 AM. When required to commence work at 8:00 
AM, evening types may experience cognitive impairment akin to a sleep-like state. 
Furthermore, chronic misalignment with their circadian rhythm increases the likelihood of 
developing mental and physical health disorders. 

Sleep pressure is determined by the duration of wakefulness. A neurochemical, adenosine, 
accumulates in the brain over time, incrementally increasing the propensity for sleep. This 
signal can be temporarily suppressed by caffeine, the most widely consumed psychoactive 
substance. While caffeine masks the perception of adenosine-induced sleepiness, the 
underlying adenosine levels continue to rise. Consequently, when caffeine's effects 
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dissipate, the accumulated sleep pressure results in heightened feelings of fatigue. 
Adenosine levels are reduced exclusively through sleep. 

The interplay between sleep pressure and the circadian rhythm governs levels of alertness 
and fatigue. The urge to sleep is influenced by the balance between adenosine 
accumulation and the oscillations of the circadian rhythm. As illustrated in Figure 1, which 
depicts an all-night wakefulness scenario, the urge to sleep is notably greater at 3:00 AM 
compared to midday, despite longer wakefulness duration at the latter time point. This 
counterintuitive finding highlights the dominant influence of circadian rhythm fluctuations on 
sleep propensity. 

 
Figure 1 Circadian Rhythm and Sleep Pressure in Sleep deprivation. [Source [2]] 

Despite its apparent simplicity, sleep encompasses various stages and mechanisms that 
contribute to its restorative functions. Understanding these processes is crucial, as sleep 
affects numerous aspects of health, including cognitive performance, emotional regulation, 
and immune function. The subsequent sections of this thesis will delve deeper into the 
stages of sleep, physiological indicators, and the impact of sleep on overall health. 

 

3.1.2. Sleep Stages 

Sleep is a dynamic process composed by multiple stages that cycle throughout the night, 
each characterized by distinct physiological and neurological patterns. These stages are 
broadly categorized into non-rapid eye movement (NREM) sleep and rapid eye movement 
(REM) sleep. A typical night's sleep involves four to six cycles, each lasting approximately 
70 to 120 minutes, with the composition of these cycles evolving as the night progresses 
(see Figure 2). 

NREM sleep consists of three stages:  
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• Light Sleep (Stage N1): This initial stage marks the transition from wakefulness to 
sleep and lasts about 7 minutes. It is characterized by a decrease in muscle activity 
and slow eye movements. Individuals in this stage can be awakened easily. 

• Light Sleep (Stage N2): This stage lasts approximately 10 to 25 minutes in the initial 
cycle and lengthens in subsequent cycles. It is marked by a further decrease in 
heart rate, respiration rate and body temperature as well as relaxed muscles. It is 
still light sleep, but the sleeper is less likely to be awakened. 

• Deep Sleep (Stage N3): It is the most restorative stage, crucial for tissue repair and 
growth hormone release. There is no eye movement or muscle activity. Stage N3 
occurs predominantly in the beginning of the night and becomes shorter in later 
cycles. At this stage, waking up becomes harder, and if you do, you’re likely to feel 
disoriented. 

Following NREM sleep, the cycle progresses to: 

• REM Sleep: This stage is characterized by rapid eye movements under your 
eyelids, increased brain activity resembling wakefulness, and muscle paralysis. 
REM sleep is associated with vivid dreaming and plays a vital role in memory 
consolidation. The first REM period typically occurs after about 90 minutes of sleep 
and lengthens with during the night’s cycles. 

 

Figure 2 Sleep Stages architecture during the night. [Source [2]] 

Garmin's sleep tracking technology utilizes data from heart rate and movement sensors to 
estimate time spent in each sleep stage. This information provides users with insights into 
their sleep, helping them understand and improve their sleep quality. 

 

3.1.3. Physiological Indicators of Sleep 

Physiological indicators reflect bodily changes across sleep stages, enabling sleep 
monitoring. Wearable devices like Garmin smartwatches track some indicators effectively, 
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while others require specialized equipment, making them harder to monitor in real-world 
settings. As Garmin notes, “Sleep stages are identified through a combination of heart rate, 
heart rate variability, and body movement data”[3], but those are not the most accurate 
indicators to detect sleep, and sleep stages. 

A study was conducted in 2019 by Garmin along with the university of Kansas and other 
scientists [1], where it was compared the Garmin vívosmart 3 with the results of an in-
laboratory polysomnography (PSG), stated as the reference 100% accurate sleep tracker. 
The results showed a 69.7% of accuracy with the following Confusion Matrix in Figure 3: 

 
Figure 3 Confusion matrix between real and predicted Sleep Stages. [Source [1]] 

It is also observed that Garmin combines N1 and N2 into a single Light sleep stage for 
simplicity. Accordingly, this study adopts the same assumption from this point forward. 

 
Figure 4 Median result from Garmin Sleep Study. [Source [1]] 

Figure 4 illustrates the behavior of the median result of this study in comparison with the 
reference PSG-based data. The Garmin watch did not accurately detect all short 
awakenings during this individual's night and identified three sleep cycles (three distinct 
REM stages), whereas only two were present. 
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Numerous physiological indicators can provide insights into sleep patterns. Table 1 
presents a selection of these indicators along with their corresponding trackability. 

Table 1 Physiological indicators of sleep and their trackability. [Source: own elaboration] 

  Description   Trackable by 
Wearables 

Heart Rate   Measures heart beats per minute [bpm].   Yes  

Heart Rate Variability 
(HRV)  

 Measures variation of time [ms] between 
heartbeats.  

 Yes  

Movement   Detects physical activity via x, y and z 
accelerometers.  

 Yes  

Respiratory Rate   Measures breaths per minute. Helps detect 
disturbances like sleep apnea. 

 Yes  

Blood Oxygen Levels   Measures oxygen saturation with SpO2 
sensors.  

 Yes (some 
advanced models) 

Body Temperature   Core temperature drops around 1°C to 
initiate sleep, rises upon waking.  

 No  

Blood Pressure   Blood pressure reduces in non-REM, varies 
in REM based on dream activity.  

 No 

Other Physiological 
Activity  

 Kidney function slows, growth hormone 
release increases during sleep.  

 No (requires lab 
tests) 

All these indicators reflect how the body responds to different stages of brain activity. As 
previously mentioned, brain activity, measured through electroencephalography (EEG), is 
visualized in polysomnography (PSG). Sleep stages are primarily identified based on the 
amplitude and frequency of EEG waveforms. During light sleep, EEG recordings show low-
amplitude, mixed-frequency waves, often accompanied by characteristic features such as 
sleep spindles (brief bursts of high-frequency activity) and K-complexes (distinctive biphasic 
waves). In deep sleep, or slow-wave sleep, EEG activity is dominated by high-amplitude, 
low-frequency delta waves. REM sleep, on the other hand, presents EEG patterns that 
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closely resemble wakefulness, low amplitude and high frequency, making it difficult to 
identify based on EEG alone. Therefore, other physiological markers are essential for 
detecting REM. 

In addition to EEG, PSG monitors other physiological functions, including eye movements 
via electrooculography (EOG), which is the most reliable method for detecting REM sleep, 
and muscle activity through electromyography (EMG), which helps identify the muscle 
atonia characteristic of REM sleep. Polysomnography also typically includes 
electrocardiography (ECG) to track heart rhythm. 

This thesis focuses on the development of an alarm system for Garmin devices, which do 
not track brain activity. From this point forward, the analysis will concentrate on heart rate 
(HR), heart rate variability (HRV), and movement, acknowledging a minimum expected 
error margin of 30%, as indicated by the previously referenced Garmin study[1]. 

Heart rate and heart rate variability are measured by using optical photoplethysmography 
(PPG). PPG emits a light into the skin and detects changes in the intensity of the reflected 
light. These changes occur as blood volume in the capillaries shifts with each heartbeat. 
The raw data extracted by this sensor are beat to beat intervals (RR) in milliseconds [ms], 
meaning the time between heart beats. To calculate HR and HRV they are used the 
following formulas: 

𝐻𝑅 = !""""
##

	[𝑏𝑝𝑚]      Equation 1 

HRV can be calculated using two common formulas: RMSSD (Root Mean Square of 
Successive Differences), which is the standard method used by Garmin devices, and 
SDNN (Standard Deviation of RR intervals): 

𝐻𝑅𝑉#$%%& = + '
()'

∑ (𝑅𝑅*+' − 𝑅𝑅*),	()'
*-' [𝑚𝑠]  Equation 2 

𝐻𝑅𝑉%&(( = + '
()'

∑ (𝑅𝑅*+' − 𝑅𝑅1111),	(
*-' [𝑚𝑠]  Equation 3 

Where N denotes the number of interbeat intervals used in the calculation, and RR 
represents the interbeat intervals in milliseconds (ms). 

Lastly, movement is measured using an accelerometer, which records acceleration along 
the x, y, and z axes as defined by the orientation of the device. The output values are 
expressed in milli-g units, where 1 g represents the acceleration due to gravity 
(approximately 9.81 m/s²), and 1 milli-g equals one-thousandth of that (0.00981 m/s²). This 
allows for precise detection of even small movements. 
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Table 2 How do HR, HRV and movement change between sleep stages. [Source: own elaboration] 
 

Light Sleep Deep Sleep REM Sleep Awake 
Heart Rate Gradually 

decreases as 
parasympathetic 
activity increases. 

Lowest levels due 
to dominant 
parasympathetic 
tone. 

Variable and may 
increase, 
resembling 
wakefulness. 

Highest levels, 
influenced by 
physical and 
mental activities. 

HRV Increases 
compared to 
wakefulness, 
reflecting 
enhanced 
parasympathetic 
activity. 

Peaks, indicating 
maximal 
parasympathetic 
dominance and 
restorative 
processes. 

Decreases 
compared to deep 
sleep due to 
increased 
sympathetic activity. 

Lowest, due to 
higher 
sympathetic 
nervous system 
activity. 

Movement Moderate 
movement; body 
may shift 
positions. 

Minimal to no 
movement; body 
remains mostly 
still. 

Very little to no 
movement due to 
muscle atonia, 
except for possible 
brief twitches. 

Frequent and 
often intense 
movements, 
including 
voluntary 
activities. 

Table 2 illustrates how different sleep stages can be identified using physiological signals 
measurable by Garmin smartwatches. Notably, heart rate and heart rate variability (HRV) 
are closely linked to the balance between sympathetic and parasympathetic nervous 
system activity. The sympathetic nervous system increases physiological alertness and 
prepares the body for responsiveness, while the parasympathetic nervous system 
promotes relaxation and supports essential restorative functions such as digestion, 
urination, and defecation when the body is in a safe, resting state. 

 

3.1.4. Impact of Sleep on Health 

Sleep is a fundamental biological process that influences nearly every aspect of human 
health. Adequate and quality sleep is essential for optimal cognitive function, emotional 
well-being, physical health, and safety. 

• Cognitive Function 

Sleep plays a critical role in cognitive processes, including memory consolidation, learning, 
attention, and decision-making. During sleep, particularly during Deep sleep and REM 
stages, the brain processes and integrates new information, strengthening neural 
connections. Sleep deprivation impairs these functions, leading to decreased alertness, 
slower reaction times, and reduced problem-solving abilities. 
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• Emotional Well-being 

Adequate sleep is vital for emotional regulation and mental health. Insufficient sleep can 
increase negative emotional responses to stressors and decrease positive emotions, 
heightening the risk of mood disorders such as depression, anxiety or even suicidal 
ideation. 

• Physical Health  

Sleep is integral to physical health, supporting tissue repair, immune function, and 
metabolic regulation. Chronic sleep deprivation disrupts hormonal balances and metabolic 
processes, increasing the risk of obesity, type 2 diabetes and cardiovascular diseases. 

• Safety and Performance 

Sleep significantly affects alertness and performance. Sleep deprivation impairs cognitive 
and motor functions, leading to increased risk of accidents and errors. Drowsy driving, for 
instance, is a major safety concern, contributing to numerous road accidents annually. 

 

3.2. State of the Art  

The concept of wearable technology dates back centuries, with early innovations laying the 
groundwork for today's sophisticated devices. One of the earliest known ideas resembling 
a wearable fitness tracker was conceived by Leonardo da Vinci in the 15th century. Da Vinci 
sketched designs for a mechanical pedometer intended for military applications, aiming to 
measure the distance soldiers marched. While it's uncertain whether he built a working 
model, his vision highlighted the potential of wearable devices for tracking physical activity. 

By the late 16th century, mechanical pedometers had been developed, utilizing 
mechanisms similar to contemporary watches. These devices gained popularity among 
European aristocrats as tools for measuring walking distances. In 1780, Swiss watchmaker 
Abraham-Louis Perrelet created a self-winding watch that also functioned as a pedometer, 
measuring steps and distance walked. This innovation was introduced to the United States 
by Thomas Jefferson, who acquired a French pedometer during his time in Europe. 

The era of wearable fitness tracking began in the 20th century. In 1965, a Japanese 
professor, Dr. Yoshiro Hatano, developed the "Manpo-kei", which translates to "10,000 
steps meter." Hatano's research suggested that walking 10,000 steps daily could help 
maintain a healthy lifestyle, a very groundbreaking concept for that time, that remains 
influential in fitness tracking today.  
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The 1970s and 1980s witnessed significant advancements in wearable technology. In 
1977, Professor Seppo Säynäjäkangas invented the first battery-operated wireless heart 
rate monitor to aid the Finnish National Cross-Country Ski Team. This led to the founding 
of Polar Electro, a sports equipment manufacturer which released, in 1982, the world's first 
commercially available wireless heart rate monitor (the Sport Tester PE 2000). This device 
allowed athletes to monitor their heart rates in real-time during training, revolutionizing 
endurance sports and personal fitness tracking. 

Simultaneously, the development of digital watches with added functionalities marked the 
emergence of smartwatches. In 1972, Pulsar introduced the Time Computer Calculator, a 
watch that combined timekeeping with a calculator function, using a red LED digital display. 
This innovation paved the way for more sophisticated wearable devices. The 1980s and 
1990s saw the proliferation of digital watches with various features, including alarms, 
calculators, and data storage. In 1983, Seiko released the Data 2000, a watch capable of 
storing memos and appointments, marking a significant step toward the multifunctional 
smartwatches we know today. These developments laid the foundation for integrating 
health and fitness tracking into wearable devices.  

As smartwatches and fitness bands became more capable, developers began expanding 
their functionality beyond daytime activity tracking. By the early 2000s, a growing interest in 
understanding and improving sleep patterns prompted the integration of sleep tracking 
features. The first wave of devices capable of analyzing sleep typically relied on actigraphy, 
sensors that monitored wrist movements to infer rest and wake periods. One of the 
pioneering devices in this space was the Actiwatch, developed in 1999 by Mini Mitter Co. 
(later acquired by Philips Respironics). Though originally intended for clinical use, 
actigraphy technology would become the basis for later consumer-grade wearables. 

Around the late 2000s, commercial interest in sleep tracking grew rapidly. The original Fitbit, 
released in 2009, was among the first consumer devices to combine daytime activity 
monitoring with sleep tracking features in 2013. By wearing it at night, users could receive 
a basic overview of their sleep patterns. However, these insights were still relatively 
simplistic, focusing on sleep duration and movement rather than detailed sleep stages.  

It wasn’t long before manufacturers recognized the potential of not only tracking sleep but 
optimizing the user’s waking experience. One of the first consumer products to incorporate 
a “smart alarm” was the aXbo Sleep Phase Alarm Clock, released in 2006 by Austrian 
company aXbo. Unlike traditional alarms that wake users at a fixed time regardless of their 
sleep state, the aXbo used actigraphy-based sensors in a wearable wristband to detect 
sleep phases and determine the best moment to wake someone within a pre-set time 
window. This was a significant milestone in combining sleep science with practical 
consumer technology.  

In the following years, several companies adopted and expanded on this principle. Notably, 
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the Fitbit Versa, released in the 2018, integrated smart alarm functionality into their devices, 
and it was from then on, they adopted this functionality in almost every Fitbit wristband. 
These smart alarms operated on similar principles, which are identifying the user's light 
sleep phase within a preset interval to reduce grogginess upon waking. Fitbit's large user 
base and intuitive app interface helped bring smart alarms into mainstream awareness.  

Garmin, one of the leaders in multisport wearables, has also embraced the smart alarm 
concept. While earlier models offered basic sleep tracking, more recent devices like the 
Vívoactive 6 series (released in 2025) include advanced sleep stage detection, nap 
tracking, and smart wake functionalities. Garmin's implementation prioritizes user-defined 
wake windows and uses accelerometer and heart rate data to optimize the wake-up 
moment.  

Today, the ecosystem of sleep-focused wearables has expanded significantly. The Oura 
Ring, first released in 2015, stands out as one of the best wearables for sleep tracking, 
though it lacks a smart alarm. The Pavlok Shock Clock 3 uses vibrations, sounds, and mild 
electrical stimuli to train consistent waking habits. Meanwhile, apps like AutoSleep for the 
Apple Watch continue to innovate in smart alarm functionality through refined sleep analysis 
software. The Withings Sleep Mat, released in 2018, presented a non-wearable alternative. 
Placed under the mattress, it used pressure sensors to detect movements, breathing 
patterns, and heart rate, offering detailed sleep analysis. Additionally, smartphone 
applications like Sleep Cycle offer smart alarm features by analyzing movement and sound 
using the phone's sensors. However, their accuracy in detecting specific sleep stages tends 
to be lower compared to dedicated wearable devices. 

In summary, the journey from simple pedometers and heart rate monitors to sophisticated 
sleep-aware wearable devices highlights the rapid evolution of consumer health 
technology. Smart alarms represent a meaningful intersection of sleep science and daily 
habit formation, offering a glimpse into the future of personalized wellness. As wearable 
technology becomes more affordable and sensor accuracy improves, it’s likely that smart 
alarms and adaptive wake systems will become standard features, not only in premium 
devices, but across the full spectrum of consumer wearables. 

Figure 5 illustrates the evolution of wellness tracker wearables, tracing their development 
from the 15th century to the present day. 
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Figure 5 The evolution of wellness tracker wearables [Source: own elaboration, Source of pictures: Google] 

 

Beyond wearables, innovative non-wearable solutions have transformed the sleep tech 
landscape, specially the Eight Sleep’s Pod series. The Eight Sleep Pod is a smart mattress 
cover that goes beyond tracking sleep metrics. It actively enhances sleep quality by 
adapting the sleep environment through dynamic temperature control, adjustable bed 
elevation, and curated surround sound for relaxation. The temperature feature, which 
adjusts throughout the night to optimize comfort for each sleep phase, can be customized 
independently for each side of the bed, making it ideal for couples with different preferences. 
Eight Sleep reports benefits like increased time in deep sleep, reduced resting heart rate, 
and improved heart rate variability. However, its high cost makes it a premium choice, 
limiting accessibility. 
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4. Development Process of the Garmin Smart 
Wake up Alarm 

The development of the Garmin app, designed to wake users during light sleep phases to 
minimize morning fatigue, required a multifaceted approach that integrated algorithm 
design, backend data access, and frontend user interface development. This project was 
structured around two parallel tracks: (1) designing an algorithm to determine optimal wake-
up times based on sensor data from the Garmin Forerunner 55, and (2) implementing a 
functional application to access real-time sensor data and present it through an intuitive 
user interface. These tracks were interdependent, as the algorithm’s design relied on 
understanding the specific data that could be reliably extracted from the watch’s sensors, 
while the app’s development ensured that the data could be processed and displayed 
effectively.  

The following sections detail the development process, beginning with the setup of the 
development environment. This is followed by dataset collection and postprocessing, the 
selection and refinement of a machine learning model, the creation of a simplified version 
of the model adapted to the smartwatch’s capacity constraints, and finally, the development 
of the Garmin app in Monkey C and integration of the algorithm. 

4.1. Setting Up the Development Environment 

4.1.1. Garmin’s Connect IQ Platform and Developer Portal 

To begin development, the Garmin’s Connect IQ platform was used, a robust ecosystem 
designed to enable developers to create custom applications, watch faces, widgets, and 
data fields for Garmin wearable devices. The Connect IQ platform, introduced in 2015, 
allows third-party developers to extend the functionality of Garmin devices by leveraging 
the proprietary Monkey C programming language. The Garmin Developer Portal1 serves 
as the central hub for accessing resources, documentation, and tools necessary for app 
development. The portal provides comprehensive guides, including: 

• API Documentation: Detailed references for accessing device features such as 
sensors, user profiles, and communication modules. 

• SDK Downloads: Tools for compiling, testing, and deploying applications. 
• Programmer’s Guide: Tutorials and best practices for writing Monkey C code, 

managing resources, and adhering to user experience guidelines for designing 
intuitive, device-appropriate interfaces. 

 

1 https://developer.garmin.com/connect-iq/overview/ 
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The Connect IQ platform is tailored to accommodate the resource-constrained nature of 
Garmin wearables, which prioritize battery life and performance over computational power. 
Monkey C, the language used for Connect IQ development, is an object-oriented, 
dynamically typed language inspired by Java, JavaScript, Python, PHP, and Ruby. It is 
designed to be lightweight and efficient, using reference counting for memory management 
instead of garbage collection, which reduces memory overhead on the devices. 

 

4.1.2. Software Development Kit (SDK) Setup 

A Software Development Kit (SDK) is a collection of tools, libraries, and documentation 
designed to facilitate application development for a specific platform or framework. The 
Connect IQ SDK includes the Monkey C compiler (that transforms Monkey C into 
bytecode), a device simulator (any existing Garmin model can be simulated), and libraries 
for interacting with Garmin device hardware and APIs. The SDK is essential for compiling 
Monkey C code into bytecode that runs on the Connect IQ virtual machine, ensuring 
compatibility with the Garmin wearables. 

 

4.1.3. Choosing the Development Environment: Cursor 

For coding, Cursor was selected, a modern Integrated Development Environment (IDE) 
based on Visual Studio Code and enhanced with artificial intelligence capabilities aimed at 
improving developer productivity. Cursor is increasingly adopted by the developer 
community due to its AI-assisted code suggestions, real-time debugging support, and 
natural language-based code generation, which collectively streamline the software 
development workflow. Cursor offers a lightweight, customizable interface with integrated 
support for Monkey C through the official Garmin Connect IQ extension. 

Following the installation of the Monkey C extension, Cursor effectively functioned as a 
comprehensive Connect IQ development environment, providing: 

• Syntax highlighting and autocompletion for Monkey C. 
• Build integration for compiling apps directly from the IDE. 
• Debugging tools for testing apps in the Connect IQ simulator. 
• Project creation wizards to set up new Connect IQ projects. 

Using the extension’s project creation wizard, a watch app project targeting the Garmin 
Forerunner 55 was generated. The wizard automatically produced a structured project 
directory that included: 

• A manifest.xml file, defining app configuration and device compatibility. 
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• A monkey.jungle file, specifying build configurations 
• A primary Monkey C source file (source/App.mc), containing the app’s core logic. 

 

4.2. Auxiliary App Development: Accessing Sensor Data 

The first milestone was to create a simple Connect IQ app to access and display real-time 
sensor data from the Garmin Forerunner 55. This step was crucial to understand the data 
available for the wake-up algorithm and to validate the app’s ability to interact with the 
device’s sensors. 

The app focuses on two sensors: the heart rate monitor, providing heart rate (HR) and heart 
rate variability (HRV) data via interbeat intervals (IBIs); and the accelerometer, capturing 
movement data. The raw data from these sensors required processing to be usable for the 
algorithm. The heart rate monitor provides IBIs, which are the time intervals (in milliseconds) 
between consecutive heartbeats. The Toybox.Sensor.HeartRateData.heartBeatIntervals API 
returns an array of up to ten IBI values per second, though during sleep, typically only one 
to three values are recorded due to lower heart rates. The accelerometer measures linear 
acceleration across three axes (x, y, z) relative to the Earth’s gravitational field. The 
Toybox.Sensor.AccelerometerData.x, .y, and .z APIs return arrays of 25 values per second for 
each axis, measured in milli-g (where 1000 milli-g equals 1 g), with positive or negative 
values. 

In order to record full-night data for subsequent analysis and algorithm development, a 
separate application was developed to access and store the required information using a 
different set of commands than those employed previously. This was necessary to ensure 
the data could be written to a FIT file for later download. The process began with the 
creation of an activity session. Once the session was initiated, the FIT file automatically 
recorded heart rate (HR) at one-second intervals, along with other parameters. To capture 
specific fields, such as interbeat intervals (IBIs) and accelerometer data, explicit 
configuration was required. 

 

4.3. Night data analysis 

The FIT files generated by the Garmin device are in a binary format and require conversion 
to a human-readable structure for analysis. To facilitate this, the FitCSVTool.jar utility 
included in the Connect IQ SDK was used to convert the FIT files into CSV format. The 
resulting CSV files contained raw sensor data but exhibited inconsistencies and redundant 
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entries that necessitated further cleaning. While heart rate (HR) values were automatically 
derived from interbeat intervals (IBIs) by the activity recorder, both IBIs and accelerometer 
data required additional manual processing in Excel in order to compute heart rate 
variability (HRV) and movement-related metrics. These calculations where afterwards 
automated with python. 

 

4.3.1. Data Cleaning 

The FIT file records IBIs as arrays of ten values per second, separated by vertical bars (|), 
with a default value of 65535 indicating no data. (See an example in Table 3) 

Table 3 Raw Interbeat intervals data. [Source: own elaboration] 

btb_intervals 1244|65535|65535|65535|65535|65535|65535|65535|65535|65535 ms 

btb_intervals 995|65535|65535|65535|65535|65535|65535|65535|65535|65535 ms 

btb_intervals 1033|65535|65535|65535|65535|65535|65535|65535|65535|65535 ms 

btb_intervals 1033|65535|65535|65535|65535|65535|65535|65535|65535|65535 ms 

btb_intervals 892|916|65535|65535|65535|65535|65535|65535|65535|65535 ms 

Analysis of multiple nights of data revealed that, during sleep, typically one or two interbeat 
interval (IBI) values were recorded per second. Values equal to 65535, which indicate 
invalid readings, were filtered out, and valid IBIs were extracted into separate columns for 
further analysis. Repeated IBI values were also observed, as illustrated in the third and 
fourth rows of the example above; such repetitions could occur multiple times throughout 
the dataset. To address this issue, duplicate rows were removed, resulting in a cleaned 
dataset as shown below in Table 4. 

Table 4 Cleaned Interbeat intervals data. [Source: own elaboration] 

btb_intervals 1244  ms 

btb_intervals 995  ms 

btb_intervals 1033  ms 

btb_intervals   ms 

btb_intervals 892 916 ms 

Accelerometer data required comparatively less preprocessing. Each row in the file 
contained calibrated accelerometer readings for the x, y, and z axes. For each second, 25 
values per axis were recorded and presented as sequences separated by vertical bars (|). 
(See an example in Table 5) 
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Table 5 Raw accelerometer data. [Source: own elaboration] 

calibrated_accel_x 
-622.0|-629.0|-596.0|-685.0|-565.0|-
621.0|-640.0|-838.0|-604.0|-724.0|-
736.0|-760.0|-755.0|-755.0|-739.0|-
779.0|-752.0|-755.0|-766.0|-731.0|-
773.0|-780.0|-763.0|-753.0|-746.0 

g calibrated_accel_y … 

To simplify the analysis, the average of the 25 accelerometer values per second was 
computed for each axis using Excel, resulting in a single representative value per axis per 
second. 

In order to merge the three sensor datasets—heart rate (HR), interbeat intervals (IBIs), and 
accelerometer data—into a continuous timeline, the raw data were examined. As explicit 
timestamp cells were absent, the timestamp of the first recorded second was extracted from 
the filename, with subsequent data assumed to follow at one-second intervals. 

Upon inspection, irregularities were identified in the structure of the raw data. Typically, 
each second included three rows: one containing HR and IBI data, one with accelerometer 
data, and one with additional fields not relevant to the present analysis. However, in certain 
cases, multiple rows of the same data type were recorded within a single second. To 
maintain temporal consistency, only the first instance of each data type per second was 
retained, and duplicates were discarded. This cleaning process ensured the generation of 
a coherent and synchronized dataset suitable for algorithm development. 

 

4.3.2. Training dataset creation 

The heart rate (HR) variable was already structured appropriately for analysis. For heart 
rate variability (HRV), the two columns of interbeat intervals (IBIs) were used in conjunction 
with   Equation 2. As noted in Garmin’s documentation, HRV is calculated "based 
on analysis of 5-minute time windows"[4], which may indicate either a single HRV value 
every 5 minutes or a rolling calculation with a higher sampling frequency. To perform these 
calculations, given their computational complexity, an Excel macro was developed. 

This macro processed the most recent 300 rows (300 seconds) of IBI data, merging the two 
IBI columns into a single continuous array. Due to the variable number of IBI entries per 
second (with some rows containing two values and others being empty), the resulting array 
could contain more or fewer than 300 values. The final number of values in the array was 
treated as N in   Equation 2. 

Movement was defined as the difference between consecutive acceleration values along 
the same axis. To derive a single scalar value representing overall movement, considering 
that acceleration is a vector, the magnitude was calculated using the following equation: 
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𝑀𝑂𝑉 = +𝑀𝑂444444⃗ 𝑉., +𝑀𝑂444444⃗ 𝑉/, +𝑀𝑂444444⃗ 𝑉0,   Equation 4 

For an average 8-hour night, the dataset consisted of 28,800 values per variable. However, 
depending on the model, a larger dataset does not necessarily improve performance, as 
excessive data can introduce noise and increase the risk of overfitting. To mitigate this, data 
reduction was performed by computing averages over 1-minute or 5-minute intervals, as 
detailed in the following section. This approach also supported the development of the 
device algorithm, which operates under the computational constraints of the Garmin 
Forerunner 55. 

For the target variable, sleep stages, data were extracted from Garmin Connect, the user 
platform that provides detailed insights into activities and wellness, including minute-by-
minute sleep stage summaries. Analysis showed that using 1-minute averages for the input 
variables (HR, HRV, and movement) improved the model’s accuracy compared to 5-minute 
averages. Moreover, since Garmin Connect defines sleep stages at 1-minute intervals, the 
1-minute averaging aligned better with the reference data. Therefore, 1-minute intervals 
were selected for the final dataset to optimize both model performance and compatibility 
with the target variable’s temporal resolution. 

 

4.3.3. Choosing the experiment samples of data 

To evaluate the generalizability of the model and reduce potential bias toward individual 
characteristics, sensor data from three distinct subjects were selected and analyzed 
independently. Subjects were chosen to introduce variation in both sex and age within a 
narrow range, reflecting the primary demographic of typical Garmin Forerunner 55 users. 
All selected individuals fell within the age range of 20 to 23 years, which aligns with the core 
market segment for this device. 

Each subject contributed multiple nights of sleep data, with recordings randomly selected 
across different days of the week and weeks, thereby introducing natural variability in sleep 
patterns and durations. The inclusion of nights with different lengths further ensured that 
the model would be exposed to a range of real-world sleep conditions. 

Inclusion criteria for participation required subjects to: 

1. Personally own a Garmin Forerunner 55 device. 
2. Have already used Garmin Connect sleep tracking for at least a week. 

The characteristics of the selected subjects and the corresponding data samples are 
summarized in Table 6. 
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Table 6 Description of the experiment subjects and its data. [Source: own elaboration] 

 Age Sex Number of 
nights 

Number of 
samples 

Subject 1 21 Female 6 2798 

Subject 2 23 Male 1 331 

Subject 3 20 Male 1 533 

 

4.3.4. Exploratory visual analysis 

To investigate potential relationships between the input variables—heart rate (HR), heart 
rate variability (HRV), and movement (MOV)—and the output sleep stages—Deep (D), 
Light (L), REM (R), and Awake (A)—, an initial visual inspection of the data was conducted. 
Visual analysis serves as a critical preliminary step, as it can reveal patterns and trends not 
immediately evident through numerical methods and inform the direction of the analysis. 

Figures 6, 7, 8 present the sleep stages as shaded columns, overlaid with the input 
variables plotted as continuous lines. Contrary to theoretical expectations, the visualizations 
showed some inconsistencies. For instance, while the literature generally describes REM 
sleep as a state of near paralysis accompanied by low HRV, Figure 6 reveals notable 
movement during REM periods. Figure 7 also shows movement during REM, although the 
pattern appears more sporadic, isolated spikes amid prolonged periods of stillness, 
potentially aligning more closely with theoretical assumptions. 

In Figure 7, a particularly noteworthy segment appears between 4:00 AM and 5:00 AM, 
where high HRV, absence of movement, and a drop in HR suggest a possible deep sleep 
episode. However, the model fails to identify this correctly and classifies the period as light 
sleep. On the other hand, in Figure 8, a clear peak in HRV is observed accompanied by no 
movement and low HR at the beginning of the night, and it is correctly classified as deep 
sleep. 

Heart rate, in general, did not display any clear visual correlation with the sleep stages in 
the plots. This absence of obvious visual patterns does not preclude the existence of 
underlying relationships that could be uncovered through machine learning techniques. 

At this stage, we are using Garmin’s sleep model as a reference. However, its accuracy 



Development of Wake-Up Optimization Software  Page 35 

 

appears limited and may not serve as a reliable ground truth. 

 
Figure 6 Subject 2’s 01/06/2025 night analysis. [Source: own elaboration] 

 

Figure 7 Subject 1’s 01/06/2025 night analysis. [Source: own elaboration] 
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Figure 8 Subject 1’s 23/05/2025 night analysis. [Source: own elaboration] 

Before attributing inconsistencies solely to Garmin’s model, it is necessary to first consider 
potential limitations within the present analysis. An initial observation includes the presence 
of significant movement during REM periods, which contradicts the patterns described in 
existing literature. This anomaly may indicate a hardware-related issue, particularly 
inaccuracies in the accelerometer. 

Accelerometers are known to exhibit bias and drift due to integration errors. Even when 
stationary, these sensors may not register zero acceleration because of inherent 
imperfections. Such bias can accumulate when acceleration is integrated to estimate 
velocity or position, ultimately resulting in drift. To address this, many devices implement a 
Kalman filter to estimate the true state of the system and compensate for sensor bias. 

In this study, integration to calculate velocity or position is not performed. Instead, 
movement is derived from the difference between consecutive accelerometer readings, a 
method that inherently minimizes the influence of constant bias. 

The possibility of a temporal misalignment between movement data and sleep stage 
classifications was also considered. For instance, Garmin may correctly identify stillness 
during REM, while the recorded movement data could be shifted temporally. Nevertheless, 
this hypothesis can be discarded based on, for example, Figure 6, where the start and end 
of the sleep period are clearly marked by a significant decrease and increase in movement 
and heart rate, corresponding with the expected awake states. This suggests that the data 
is well-aligned with minimal temporal offset. 

Additionally, the heart rate and movement data used in this analysis correspond closely to 
the graphical data displayed in Garmin’s own application (Garmin Connect). Although 
movement is smoothed and aggregated in Garmin’s interface, the general patterns shown 
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in Figure 9 are consistent to the corresponding data of study in Figure 8, reinforcing the 
reliability of the input data used in this study. 

 

Figure 9 Sleep stage display in Garmin connect for Subject 1’s 23/05/2025 night. [Source: Personal Garmin 
Connect platform] 

Based on the preceding observations, the reliability of Garmin’s sleep stage classification 
is called into question. Even Figure 2, which presents a standard night’s sleep architecture, 
does not match the stage distributions provided by Garmin’s model for any of the subjects 
studied. 

As previously noted in this thesis, Garmin devices, particularly the Forerunner 55 model, 
are not known for their excellence in sleep tracking. Garmin has traditionally focused on 
activity tracking and has integrated sleep analysis primarily as a feature to monitor recovery 
for athletes. The hardware capabilities of the Forerunner 55 are relatively limited in this 
context. 

Therefore, while this study continues to use Garmin’s sleep stage outputs as a reference, 
it does so with caution. The limitations of the Forerunner’s hardware and its generalized 
sleep tracking algorithm suggest that the results may not be as accurate as those obtained 
using higher-end Garmin models or devices specifically designed for sleep analysis. 

 

4.3.5. LSTM model decision 

A machine learning model was developed to identify suitable moments based on the 
processed sensor data. Among various machine learning approaches considered, a Long 
Short-Term Memory (LSTM) model was selected due to the sequential structure and 
substantial volume of the dataset. The LSTM architecture was deemed the most 
appropriate for this application owing to its capacity to learn temporal patterns in long, 
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sequential time-series data. 

LSTMs are a specialized type of recurrent neural network (RNN) designed to model and 
learn from sequential data, particularly when dealing with long-term dependencies. Unlike 
traditional feedforward neural networks, which treat inputs independently, LSTMs maintain 
a memory cell that can store information across many time steps, making them well-suited 
for time-series analysis. In the context of this project, the dataset consists of sequential 
measurements recorded minute by minute, where patterns in sleep stages (light, deep, or 
REM sleep) emerge over extended periods. The LSTM’s ability to capture temporal 
relationships and retain context from earlier data points was critical for accurately detecting 
light sleep phases based on these patterns. 

Alternative models, including traditional Recurrent Neural Networks (RNNs) and decision 
trees, were considered. However, standard RNNs are prone to vanishing gradient issues, 
which reduce their effectiveness when applied to long sequences such as an 8-hour sleep 
dataset. While decision tree-based models like Random Forests are effective for static data, 
they lack the capability to capture the temporal dependencies inherent in time-series data. 

The LSTM model was designed as a categorical classifier to predict discrete sleep stages 
(light, deep, REM, or awake) for each time window, with the objective of identifying light 
sleep as the optimal period for triggering the wake-up alarm. To determine whether the user 
was in light sleep, the output was explored in a simplified binary classification: 1 for light 
sleep (indicating a suitable time to wake up) and 0 for non-light sleep (indicating the user 
should continue sleeping). This version will lead to a simplified yet more accurate model. 

4.3.6. LSTM Model Optimization and Performance Evaluation 

The LSTM model development begins with the loading and concatenation of data from the 
previously cleaned Excel files, representing sleep data collected over various nights from a 
single individual. This approach focuses on learning personalized patterns to create a 
tailored model. Should the model be later tested in other individuals to validate it.  

To mitigate the impact of outliers that could skew prediction results, all variables are capped 
at the 99th percentile. Features are organized into an input matrix “X”, and the binary target 
variable is stored in an array “y”. Subsequently, features are normalized using the 
MinMaxScaler, which transforms values to a range of [0, 1] to ensure consistency across 
different scales. 

During data consolidation, an imbalance between the two target classes may arise, where 
one class is disproportionately represented. Such imbalances could bias the model toward 
predicting the majority class. To address this, the Synthetic Minority Oversampling 
Technique (SMOTE) is employed, generating synthetic samples for the minority class 
based on existing data points to achieve a balanced dataset. 
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Following preprocessing, sequences are defined for the LSTM model by selecting the 
number of time steps used for predictions. This parameter can be optimized later to 
enhance performance. Given that the data is recorded at one-minute intervals, an initial 
sequence length of 15 - 30 minutes is selected to capture temporal trends preceding each 
prediction. 

As is standard in machine learning, the dataset is split into a training set (80%) and a testing 
set (20%). This ratio strikes a balance: 80% gives the model enough data to learn 
meaningful patterns, while 20% is typically large enough to reliably evaluate how well the 
model generalizes to unseen data. Using too little for training can lead to underfitting, while 
too little for testing can result in unreliable performance estimates. 

The model is constructed as a Recurrent Neural Network (RNN) utilizing Long Short-Term 
Memory (LSTM) layers. Initial parameters are set to a standard default configuration, which 
will be iteratively refined to maximize accuracy. As shown in Figure 10, the model 
architecture comprises the following components: 

• Input Layer: Specifies the input shape, which includes the number of time steps and 
the number of features (three: HR, HRV, and MOV). 

• LSTM Layer: Includes 64 memory units (neurons) as a starting configuration. A 
bidirectional LSTM, which considers both past and future values, was not adopted, 
as real-time sleep stage classification requires predictions based solely on past and 
current data. 

• Dropout Layer: Applies a dropout rate of 40%, meaning 40% of the neurons are 
randomly ignored during training. This helps reduce overfitting by preventing the 
model from relying too heavily on specific neurons or noise in the data. 

• Dense Layers: The first dense layer includes 16 units and uses the ReLU (Rectified 
Linear Unit) activation function. The final output layer uses a sigmoid activation 
function, which outputs a probability between 0 and 1 for binary classification (this 
makes possible to see how confident the model is about its decision, the closer it 
gets to 0 or 1, the more confident of the decision it is). Both activation functions are 
illustrated in Figure 11. 

These parameters are subject to adjustment based on model performance during 
experimentation and iteration. 

     model = Sequential([ 
         Input(shape=(time_steps, X_train.shape[2])), 
         LSTM(64, return_sequences=True), 
         Dropout(0.4), 
         LSTM(32), 
         Dropout(0.4), 
         Dense(16, activation='relu'), 
         Dense(1, activation='sigmoid') 
     ]) 

Figure 10 Section of the LSTM training model code. [Source: own elaboration] 
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Figure 11 ReLu and Sigmoid Activation Functions. [Source [6]] 

The model is compiled using the Adam optimizer (Adaptive Moment Estimation), which 
dynamically adjusts the learning rate during training, starting at a default value of 0.001. 
This rate can be modified, reduced to mitigate underfitting by slowing training or increased 
to accelerate convergence. The loss function is defined as binary cross-entropy, which 
quantifies the discrepancy between predicted and true labels, penalizing confident incorrect 
predictions more severely. Accuracy, defined as the proportion of correct predictions, is 
selected as the primary metric for optimization. 

The model uses 2,960 sequences (80% of the full dataset of 3,676) for training. A validation 
split of 0.2 is applied to this training set, leaving 2,368 sequences for actual training and 
592 sequences for validation. The model will be trained over 50 epochs, meaning it will 
make 50 complete passes through the entire training dataset, learning from each pass and 
updating its internal weights accordingly. 

With a batch size of 32, the number of batches per epoch is computed as: 

2368
32

≈ 74	𝑏𝑎𝑡𝑐ℎ𝑒𝑠 

To enhance training efficiency and prevent overfitting, the following strategies are 
implemented: 

• If no improvement is observed after five consecutive epochs, the learning rate is 
reduced by 50%. 

• If no improvement occurs after ten consecutive epochs, training is stopped, and the 
model reverts to the best-performing version based on validation accuracy. 

These training parameters are standard defaults, known to perform reliably across various 
objectives and model architectures. 
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Training was conducted to evaluate the model’s capacity to predict sleep stages. Through 
iterative experimentation, a sequence length of 30 minutes (corresponding to 30 time steps) 
was determined to provide optimal performance. To identify the best model configuration, 
training was initially performed using data from a single subject, selected based on the 
availability of the largest number of samples. After reaching an optimal model for this 
subject, its generalizability was assessed by testing on data from additional subjects to 
verify consistent learning performance. 

Using data from Subject 1 collected over six nights (2,798 samples), an initial test accuracy 
of 85.05% was obtained. As illustrated in Figure 12, the training and validation accuracies 
exhibit similar trends, suggesting the absence of overfitting, which typically presents as 
increasing training accuracy alongside decreasing validation accuracy. Moreover, the 
accuracy curves indicate that additional training epochs beyond the 42nd epoch do not yield 
further performance improvements, suggesting convergence to an optimal solution. 

 

Figure 12 Training and Validation Accuracies throughout epochs (1st iteration). [Source: own elaboration] 

Figure 13 Confusion matrix of the test (1st iteration). [Source: own elaboration] 

The 85.05% accuracy is very high staring point, from where the model can be pushed by 
little changes to try to increase it through iterations. With the time steps fixed at 30, the first 
and second LSTM layers, initially set to 64 and 32 units, respectively, are adjusted to 128 
and 64 units to enable the model to capture more complex sequential patterns. This 
modification will add more parameters to the model and could risks overfitting but is 
evaluated empirically. The test accuracy improved by 3.39% to 86.68%. Figure 14 confirms 
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that both training and validation accuracies continue to rise, indicating no overfitting. 

 

Figure 14 Training and Validation Accuracies throughout epochs (2nd iteration). [Source: own elaboration] 

Figure 15 Confusion matrix of the test (2nd iteration). [Source: own elaboration] 

To further enhance performance, a third LSTM layer with 32 units with a 40% dropout rate 
is introduced. This modification increased the test accuracy by 4.49% to 91.17%. As shown 
in Figure 16, no overfitting is observed, since the validation accuracy is constantly higher 
than the training accuracy and ends in the last epoch with an accuracy similar to the one 
obtained in the test. A comparison between Figures 15 and 17 reveals a substantial 
reduction in the number of false positives, specifically instances where light sleep was 
incorrectly predicted. Minimizing false positives is particularly important in this context, as 
erroneous identification of light sleep may result in premature or untimely user awakenings. 
In contrast, false negatives, failing to detect light sleep episodes, are considered less 
detrimental to the overall objective. 

 

Figure 16 Training and Validation Accuracies throughout epochs (3rd iteration). [Source: own elaboration] 

Figure 17 Confusion matrix of the test (3rd iteration). [Source: own elaboration] 
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Encouraged by these results, the LSTM layer units are doubled again to 256, 128, and 64, 
respectively. This adjustment improved the test accuracy by 0.95% to 92.12%. However, 
Figure 18 reveals that the validation accuracy curve begins to flatten, and validation 
accuracy starts to go below training accuracy, suggesting the onset of overfitting. To test 
this hypothesis, the units are doubled again (512, 256, 128), resulting in a reduced test 
accuracy of 62.50% since the training was stopped in the 12th epoch due to an early stop 
caused by no improvement. This confirms that the configuration with 256, 128, and 64 units 
represents an optimal balance, yielding a test accuracy of 92.12%. 

 

Figure 18 Training and Validation Accuracies throughout epochs (4th iteration). [Source: own elaboration] 

Figure 19 Confusion matrix of the test (4th iteration). [Source: own elaboration] 

Another parameter explored was the batch size, defined as the number of training samples 
processed before each weight update. The default batch size of 32 was reduced to 16, 
resulting in noisier gradient estimates that can potentially improve model generalization. 
This smaller batch size increased the number of weight updates per epoch from 74 to 147, 
consequently extending the training duration. The adjustment led to an increase in test 
accuracy to 92.39%, representing a 0.27% improvement over the previous model. As 
illustrated in Figure 21, this modification also helped balance false negatives and false 
positives, notably reducing false positives, which are critical in this application. 
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Figure 20 Training and Validation Accuracies throughout epochs (6th iteration). [Source: own elaboration] 

Figure 21 Confusion matrix of the test (6th iteration). [Source: own elaboration] 

The learning rate was subsequently examined by reducing the default Adam optimizer rate 
from 0.001 to 0.0001 to evaluate whether slower convergence would enhance 
performance. This adjustment, however, led to a substantial decrease in test accuracy to 
77.17%, suggesting underfitting likely caused by insufficiently large weight updates.  

Consequently, the learning rate was restored to its default value, and the next parameter 
was explored for optimization. The dropout rate was increased from 0.4 to 0.5 in an effort 
to further reduce overfitting by decreasing neuron co-dependencies. As depicted in Figure 
20, slight overfitting is observed in later epochs, since validation accuracy lags slightly 
behind training accuracy, indicating that a higher dropout rate may be beneficial. 
Nonetheless, the increased dropout rate resulted in a reduced test accuracy of 67.93%, 
which is notably lower than the 92.39% accuracy achieved in the sixth iteration.  

Achieving 92.39% accuracy is considered strong for this model type, given the substantial 
data complexity and inherent noise. While random classification accuracy for this binary 
task is 50%, improving upon this baseline by 42.39% represents a significant gain. 
Additionally, it is important to note that this model utilizes only past and present data, 
whereas the Garmin algorithm benefits from full-night data access, which likely contributes 
to its performance advantage. 

The full code for the LSTM model in python can be found in annex 1. 
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4.4. Simplified model for Connect IQ App 

The Garmin Forerunner 55 lacks sufficient computational resources and battery capacity to 
support a resource-intensive Long Short-Term Memory (LSTM) model for continuous sleep 
stage classification throughout the night without external device connectivity. Consequently, 
a simplified model was developed to operate natively on the device, prioritizing 
computational efficiency while maintaining acceptable classification accuracy. Previous 
analyses (see Section [4.3.4]) concluded that Garmin Connect’s proprietary sleep stage 
classifications are unreliable. Therefore, this model was designed based on established 
sleep research literature, ensuring a theoretically robust foundation independent of 
Garmin’s outputs. 

 

4.4.1. Theoretical foundations for the output decision 

Sleep stages are characterized by distinct physiological patterns, as described in section 
3.1.3. From those patterns, with a Garmin watch can be measured only heart rate variability 
(HRV), movement (MOV), and heart rate (HR). And they follow the following relationships: 

- Light Sleep (L): Elevated HRV, moderate movement, and reduced HR compared to 
wakefulness. 

- REM Sleep (R): Reduced HRV, minimal movement due to paralysis, and elevated 
HR due to heightened brain activity. 

- Deep Sleep (D): Highest HRV, minimal movement, and significantly reduced HR. 
- Awake (A): Low HRV, high movement, and elevated HR. 

Sleep cycles, averaging 90 minutes in duration, exhibit dynamic patterns where REM sleep 
durations increase and Deep Sleep durations decrease as the night progresses. Although 
individual physiological baselines vary, these patterns provide a reliable framework for 
sleep stage classification. HR was deemed less important for distinguishing sleep stages 
due to its variability across contexts. Thus, the model prioritizes HRV and movement as 
primary features, as they already offer a clear differentiation between sleep stages. 

The objective was to develop a binary classification model to distinguish "Light Sleep or 
Awake" (L/A) from "REM sleep or Deep sleep" (R/D). This binary output is tailored to identify 
optimal wake-up times during Light Sleep, as waking during REM or Deep Sleep can lead 
to sleep inertia and reduced alertness. 
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4.4.2. Data and Preprocessing 

Physiological data already cleaned and preprocessed for the training of the lstm model was 
again used for this case. But some further preprocessing was made, with the idea of 
simplifying the model’s calculations and make it adaptable to any Garmin user.  

- To account for the accelerometer’s limited precision, a margin of 5 units in the 
movement variable was used to indicate no movement.  

- To normalize HRV and account for inter-individual variability, a normalized HRV 
was computed as the ratio of the current HRV to the baseline HRV, defined as the 
average of nightly mean HRV values over the previous seven days.  

A synthetic dataset was constructed by labeling sleep epochs based on literature-derived 
patterns. The 90-minute sleep cycle structure was considered during labeling to ensure 
temporal alignment with expected REM and Deep Sleep distributions. 

 

4.4.3. Model Development 

A decision tree was selected over a quadratic expression because it is easier to interpret, 
simpler to compute, and well-suited for binary classification problems where clear feature 
thresholds are helpful. A decision tree is a model that makes predictions by asking a series 
of yes/no questions about the input features. At each step, it splits the data based on one 
feature and a specific threshold, creating branches that lead to further questions or final 
decisions. This structure is similar to a flowchart and makes it easy to follow how the model 
arrives at a prediction. The decision tree was initially trained using the Scikit-learn library in 
Python with the following parameters: 

    DecisionTreeClassifier(random_state=42, max_depth=2, min_samples_leaf=5,  
                            class_weight={0: 2, 1: 1}) 

The maximum depth was modified during iterations but later limited to 2 to ensure simplicity 
and prevent overfitting. The class weight prioritized higher penalties for misclassifying REM 
or Deep sleep as Light sleep or Awake satges, as false positives (waking during REM or 
Deep Sleep) are less desirable for the wake-up application. 

The initial decision tree was trained on the synthetic dataset, but the machine-learned 
structure did not fully utilize both HRV and movement for all possible outputs. To address 
this, the decision tree was manually refined by adjusting thresholds and restructuring the 
logic to ensure both variables influenced every classification outcome. This refinement was 
performed in Microsoft Excel for easy visualization and testing, where thresholds were 
iteratively tuned to maximize alignment with the literature-based labels. 
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The final decision tree structure is as follows: 

|--- Movement > 5  
      |--- class: Wake up 
|--- Movement <= 5 
      |--- HRV normalized > 1.1 
            |--- class: Don’t wake up 
      |--- HRV normalized <0.7 
            |--- class: Don’t wake up 
      |--- else 
            |--- class: Wake up 

 

The decision tree’s performance was evaluated by comparing its classifications against the 
literature-based labels in the synthetic dataset. Accuracy was calculated as the proportion 
of correctly classified epochs (number of correct responses divided by the total number of 
samples). The model achieved an average accuracy of 83.71%, indicating robust 
performance for a simplified approach. The class-weighted training and manual threshold 
tuning contributed to this high accuracy, particularly in prioritizing correct identification of 
non-light sleep to avoid suboptimal wake-up times. 

Limitations include the reliance on a synthetic dataset, as validation against 
polysomnography (PSG) data was not feasible within the study’s scope. Future work could 
incorporate PSG validation or integrate time-based adjustments to account for sleep cycle 
dynamics, such as increasing REM duration later in the night. Nevertheless, this model 
demonstrates the feasibility of theory-driven, lightweight sleep stage classification for 
optimizing wake-up timing on low-cost wearables. 

 

4.4.4. Garmin App design and functionalities 

Once the algorithm is defined, it is implemented into the final alarm application. As with any 
alarm system, the user is required to set an alarm time. In this case, the user sets a latest 
acceptable wake-up time, although the alarm may trigger up to 30 minutes earlier if 
determined optimal by the algorithm. 

The alarm-setting interface is illustrated in Figure 22. Upon launching the application, a 
default wake-up time is displayed. This time is retained from night to night, allowing users 
with a consistent wake-up schedule to avoid reconfiguration. 

Time selection is performed in two steps. Initially, the hour value is highlighted (indicated in 
blue in Figure 22, Step 1) and can be adjusted using the up and down buttons on the watch. 
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Confirmation is performed via the start/stop button, after which the minute selection is 
enabled (highlighted in blue in Figure 22, Step 2). Once both values are confirmed, the 
alarm is set, and a different screen is displayed (Figure 22, Step 3). This screen shows the 
current time during the night, along with the status "Wake up" or "Don’t wake up", indicating 
the algorithm’s real-time decision. 

Additionally, during the alarm-setting process, it is possible to access further configuration 
options. By holding the up button, a settings menu appears. One of the configurable 
parameters is the alarm feedback mode, which allows selection between sound and 
vibration or vibration only (Figure 22, Steps 4, 5, and 6). 

 

 
Figure 22 Alarm configuration steps. [Source: own elaboration] 

 

Relevant parts of the Garmin wake-up alarm code in Monkey C can be found in annex 2. 
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5. Results and Validation 

The final LSTM model achieved a 92.34% accuracy on a personalized dataset comprising 
six nights of sleep data from Subject 1 (female, age 21). To assess its generalizability 
across different individuals and sexes, the model was further validated using data from 
Subject 2 (male, age 20) and Subject 3 (male, age 23). 

The model was retrained with one night of sleep data from each of Subjects 2 and 3, yielding 
satisfactory results. For Subject 2, the model attained an accuracy of 85.92%, representing 
a 35.92% improvement over a random binary baseline (50%). For Subject 3, the model 
achieved a higher accuracy of 90.14%, improving by 40.14% over the same baseline. 
Although these accuracies are lower than that of Subject 1, the difference is likely 
attributable to the smaller dataset sizes for Subjects 2 and 3 (one night each) compared to 
Subject 1’s six nights. These results demonstrate the model’s ability to adapt to new users, 
including across sexes, but suggest that performance may improve with larger datasets. 
Further testing with more diverse subjects and extended data collection would enhance 
robustness and confirm generalizability. 

The application was successfully tested and performed as intended. It accurately read 
sensor data (heart rate, heart rate variability, and movement) from the Garmin smartwatch, 
processing these metrics minute-by-minute to determine optimal wake-up times. The alarm 
functionality worked reliably, triggering the alarm precisely when the algorithm identified an 
appropriate light sleep phase within the user’s specified wake-up window, and stopping it 
via the corresponding button, with options for sound and vibration or vibration only, as 
configured by the user. 

However, further research is needed to evaluate the application’s effectiveness in reducing 
morning grogginess (inertia) and improving sleep quality perception. Long-term studies with 
a larger and more diverse participant pool are essential to validate its performance across 
a broader range of individuals, including variations in age, sex, and sleep patterns, and to 
quantify its impact on wake-up experience and overall well-being. 
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6. Planning 

The project was structured into four main phases: the literature review, the development of 
the Garmin application using Monkey C, the data collection and preprocessing, and finally, 
the training and evaluation of the LSTM model along with its simplified version. Each of 
these phases is described in greater detail and scheduled day by day in annex 3. 
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7. Economic assessment 

This section presents the estimated cost of developing the present work, as if it had been 
carried out in a professional setting. The assessment considers the time invested, 
operational expenses, experimental resources, equipment depreciation, and potential 
licensing costs. All values are expressed in euros (€). 

1. Labor Cost 

According to the university, the workload for this Final Project is equivalent to 360 hours. 
Assuming a cost of €15/hour, the total labor cost is: 

360	hours	 × 	15€/hour	 = 	5,400€ 

A breakdown by task (estimated): 

- Literature review and research: 60 h 
- Data collection and preprocessing: 50 h 
- Algorithm development and training: 60 h 
- App interface design and implementation: 100 h 
- Testing and validation: 30 h 
- Writing and documentation: 60 h 

2. Operational Expenses 

These include basic utilities, office supplies, and indirect usage costs during the project 
development. (See Table 7) 

Table 7 Operational expenses breakdown. [Source: own elaboration] 

Item Estimated Net Cost (€) Estimated Gross Cost (€) 

Electricity, water, heating 60 € 50 € 

Internet  70 € 58 € 

Miscellaneous 20 € 17 € 

Total 155 € 125 € 

 

3. Experimental Expenses 

The expenses used in the experimentation part are broken down in Table 8. 
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Table 8 Experimental expenses breakdown. [Source: own elaboration] 

Item Net Cost (€) Gross cost 

Garmin Forerunner 55 
smartwatch 

180 € x 3 units 446.28 € 

Cursor subscription 20 $/month x 5 months = 17.30 € x 5 71.49 € 

Grok subscription 39 $/month x 5 months = 25.95 € x 5 107.23 € 

Total 756.25 € 625 € 
 

4. Depreciation of Equipment 

Laptop used during the project, estimated at €1,000 with a useful life of 5 years: 

→ Annual depreciation: €1,000	/	5	 = 	€200 

→ Proportional use for 5 months: €200	x	5	/	12	~	€80 

Smartphone used for testing, estimated at €600 with a 3-year life: 

→ Annual depreciation: €600	/	3	 = 	€200 

→ Proportional use for 5 months: €200	x	5	/	12		~	€80 

(See depreciation expenses in Table 9) 

Table 9 Equipment depreciation expenses breakdown. [Source: own elaboration] 

Equipment Depreciation (€) 

Laptop 80 € 

Smartphone 80 € 

Total 160 € 

4. Total Cost (Without Tax) 

The total cost of the project before taxes is broken down in Table 10. 
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Table 10 Subtotal expenses breakdown before taxes. [Source: own elaboration] 

Category Total (€) 

Labor 5,400 € 

Operational expenses 125 € 

Experimental expenses 625 € 

Equipment depreciation 160 € 

Subtotal 6,310€ 

 

6. Including Taxes 

Assuming a 21% VAT rate: 

VAT:	6,310€	 × 	0.21	 = 	1,325.10€ 

Total	including	VAT:	6,310€	 + 1,325.10€	 = 	7,635.1€ 

The total cost of the work amounts to 6,310€, which increases to 7,635.10€ after applying 
the corresponding VAT (21%). 

 

The total estimated cost of over 7,500 € reflects a reasonable valuation for the work 
involved, considering it includes deep research, dataset and LSTM model development, 
and smartwatch integration. This cost would be higher in a commercial or industrial setting, 
especially if advanced features such as LSTM model integration with external API data 
were fully implemented and licensed. 

Given the technical depth of the work and the multi-disciplinary nature of the tasks,the cost 
can be considered moderate and justified. 
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8. Environmental assessment 

The growing use of artificial intelligence (AI) raises concerns about its environmental impact, 
particularly through energy consumption and carbon dioxide (CO₂) emissions. While cloud-
based AI systems rely on large data centers that consume significant electricity and water, 
on-device AI models running on smartphones also contribute to environmental footprints. 
This section estimates the CO₂ emissions of the Long Short-Term Memory (LSTM) model 
developed in this thesis for Garmin smartwatches, which is executed on smartphones via 
the Garmin API, assuming adoption by a large user base. 

Evaluating the environmental impact of AI models is essential to understand their carbon 
footprint, especially for applications used daily by many users. Efforts should focus on 
optimizing these models to reduce energy use and emissions. In the Garmin Connect IQ 
platform, which allows users to download applications and watch faces for Garmin 
smartwatches, popular apps can reach up to 1 million downloads. A conservative estimate 
of 500,000 downloads is assumed for this model, meaning 500,000 smartphones would run 
the model each night. This scale requires careful consideration of environmental 
consequences. 

The model runs for an average of 8 hours each night, performing one inference per minute, 
resulting in: 

8	ℎ ·
60	𝑚𝑖𝑛
ℎ

·
1	𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑚𝑖𝑛
= 480	𝑖𝑛𝑓𝑒𝑟𝑒𝑐𝑒𝑠	𝑝𝑒𝑟	𝑛𝑖𝑔ℎ𝑡 

The model operates on users’ own smartphones. And is defined by the following 
parameters which are used to estimate the emissions: 

- Number of Parameters: 30,369, reflecting the model’s computational complexity. 
- Inference Time: 70 ms per inference, measured on a personal computer and 

assumed applicable to smartphones, as modern devices have processors 
optimized for lightweight AI tasks. 

- Power Draw: 2.5 W during active CPU inference, based on typical smartphone CPU 
power consumption during intensive tasks. 

- Emission Factor: 0.283 kg CO₂e/kWh, as reported by the Comisión Nacional de los 
Mercados y la Competencia (CNMC)[5]. 

The total compute time per night per subject is:  

480	𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠	 × 	0.07	𝑠𝑒𝑐	 = 	33.6	𝑠𝑒𝑐	 = 	0.0093W	ℎ 

The energy consumed per night per subject is:  

𝐸𝑛𝑒𝑟𝑔𝑦	 = 	2.5	𝑊	 × 	0.0093W	ℎ	 = 	0.023W	𝑊ℎ	 = 	0.000023W	𝑘𝑊ℎ 
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The CO2 emissions per night per subject are: 

0.000023W	𝑘𝑊ℎ	 × 	0.283	𝑘𝑔	𝐶𝑂₂/𝑘𝑊ℎ	 = 	0.000006603W	𝑘𝑔	𝐶𝑂₂ = 	6.603W	𝑚𝑔	𝐶𝑂₂𝑒 

The annual energy consumption for 500,000 users is: 

0.000023	̂𝑘𝑊ℎ · 500,000	𝑢𝑠𝑒𝑟𝑠 · 365	𝑑𝑎𝑦𝑠 = 4,258. 3W	𝑘𝑊ℎ 

The annual CO₂ emissions for 500,000 users are: 

0.000006603W	𝑘𝑔	𝐶𝑂₂𝑒 · 500,000	𝑢𝑠𝑒𝑟𝑠 · 365	𝑑𝑎𝑦𝑠 = 1,205.1	𝑘𝑔	𝐶𝑂!𝑒 

As a reference, a single ChatGPT query consumes approximately 0.3 Wh, which is more 
than the total overnight energy consumption of this application for 10 users. Over the course 
of a year, the total CO₂e emissions generated by the app are roughly equivalent to those 
produced by a single gasoline-powered car. In essence, widespread use of the app would 
be like adding one more petrol car to the planet. 

The environmental impact of the application is relatively modest; however, its energy 
consumption contributes to the broader cumulative footprint of global digital technologies. 
To enhance sustainability, future iterations should focus on optimizing energy efficiency, 
minimizing computational requirements while maintaining functionality, and aligning with 
efforts to reduce the overall carbon intensity of digital infrastructure. 
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9. Social and gender equality assessment 

The application is designed to be inclusive across gender and social groups. The algorithm, 
based on a long short-term memory (LSTM) model, adapts to individual user data, ensuring 
functionality across diverse populations, including men, women, and individuals with non-
traditional gender identities. Testing was conducted on a small but balanced sample (one 
woman, two men, with comparable nights studied), confirming the algorithm’s adaptability 
across sexes. Since the app focuses on clinical metrics (HR, HRV, and movement), it 
avoids gender-specific biases in its core functionality. 

However, the algorithm’s performance relies on the accuracy of Garmin’s sleep stage 
detection, which provides input data for the LSTM model. A 2019 Garmin Health study 
conducted with the University of Kansas Medical Center (KUMC) validated Garmin’s 
Advanced Sleep Monitoring, reporting an overall accuracy of 69.7% for sleep stage 
classification using photoplethysmography (PPG) and actigraphy data. The study included 
67 participants (47 men, 20 women, aged approximately 35.6 ± 8.3 and 35.9 ± 10.5, 
respectively) with no known sleep-related conditions. While the study was conducted in 
real-world conditions, the participant pool was skewed toward men, raising potential 
concerns about gender-specific biases in Garmin’s algorithm, particularly for women whose 
sleep cycles may vary due to hormonal fluctuations. 

Moreover, the application’s reliance on Garmin smartwatch technology introduces potential 
socioeconomic barriers. Garmin devices are not universally affordable, which may limit 
access for lower-income individuals or vulnerable groups, such as immigrants or those with 
limited resources. To mitigate this, the app was developed to function on lower-end Garmin 
models, expanding accessibility compared to similar functionalities typically requiring 
higher-end devices.  

Individuals with physical disabilities, particularly those with limited mobility (e.g., paralytics), 
may face challenges as well, as the algorithm heavily relies on movement to detect sleep 
stages. While this group is unlikely to purchase activity-tracking smartwatches, this 
limitation highlights a potential area for future improvement, such as integrating alternative 
metrics for sleep detection. 

Team Composition, Language and Representation 

The project team consisted of a female student and a male director, with testing conducted 
on one woman and two men. While the team is small, it reflects a reasonable gender 
balance. However, the limited sample size for testing (three participants) restricts broader 
conclusions about gender equity in the research process. A more diverse testing pool in 
future iterations would strengthen the project’s inclusivity. 

The project adheres to inclusive, non-sexist, and non-androcentric language in its 
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documentation and user interface. No imagery or content promotes discriminatory ideas 
based on gender, race, culture, or socioeconomic status. The app’s design focuses on 
functionality and accessibility, avoiding elements that could reinforce social hierarchies or 
exclusionary policies. 

Sustainable Development Goals 

The project aligns with three United Nations Sustainable Development Goals (SDGs), 
contributing to social and gender equity as well as health outcomes: 

- SDG 3: Good Health and Well-Being 

By enabling precise sleep stage detection and optimal wake-up timing, the 
application promotes better sleep management, which is critical for physical and 
mental health. Improved sleep quality can enhance cognitive function, emotional 
well-being, and overall quality of life. Future initiatives, such as public education 
campaigns on sleep health, could amplify the project’s societal impact by raising 
awareness and promoting healthy sleep practices across diverse communities. 

- SDG 5: Gender Equality 

The application is designed to be gender-neutral, with the LSTM model adapting to 
individual physiological data regardless of gender. The algorithm was trained and 
tested on a balanced dataset (comparable nights studied for one woman and two 
men), ensuring equitable performance across sexes. This personalization 
minimizes potential biases, including those that might stem from Garmin’s 
underlying technology, which may not fully account for gender-specific physiological 
variations. 

- SDG 10: Reduced Inequalities 

By enabling advanced sleep-tracking functionality on lower-end Garmin smartwatch 
models, the application broadens access to technology typically reserved for users 
of premium devices. This reduces economic barriers, making sleep health tools 
more accessible to individuals with limited financial resources. While the cost of 
Garmin devices still poses a challenge for some vulnerable groups, this 
development represents a step toward reducing technological disparities and 
fostering inclusivity in health monitoring. 
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10. CONCLUSIONS 

This thesis successfully achieved its objectives by developing a functional beta prototype 
of a Garmin smartwatch application that tracks heart rate, heart rate variability, and 
movement to detect light sleep phases and trigger an optimal wake-up alarm. The prototype 
demonstrates robust basic functionalities, validated through testing across a small but 
diverse sample of users, achieving promising accuracies. However, as health technology 
is an ever-evolving field, there is significant potential for further refinement and 
enhancement of the application. 

Future iterations of this project could focus on the following improvements: 

§ Reduce reliance on Garmin’s sleep stage detection algorithm by developing a 
proprietary model trained directly on polysomnography (PSG) data. This would 
improve accuracy and address potential gender biases in Garmin’s algorithm. 
 

§ Integrate the LSTM model into the alarm functionality via the Garmin API for 
seamless real-time processing. 
 

§ Expand the app’s functionalities to enhance user convenience, such as enabling 
customizable alarms for different days of the week, adding a snooze option for users 
who would still struggle to wake up, and incorporating an option to trigger the alarm 
whenever Garmin’s Body Battery metric reaches 100%, reflecting optimal energy 
levels. 
 

§ Improve user experience by transforming the app into a widget with automatic sleep 
detection, eliminating the need for manual activation each night and ensuring 
seamless operation upon sleep onset. 
 

§ Provide post-wakeup insights, such as sleep quality metrics, grogginess levels, or 
personalized recommendations, to enhance user engagement and quantify the 
alarm’s impact on morning alertness. 
 

§ Validate the model by testing it across a diverse range of subjects and conduct in-
depth research to identify more precise optimal wake-up times. Further refine wake-
up timing by enabling user feedback, allowing users to report grogginess levels or 
confirm the alarm’s effectiveness, thereby tailoring the model to individual 
physiological profiles. 
 

§ Promote and educate the public on the importance of sleep for overall health across 
diverse settings, from children in schools to adults in universities and workplaces, 
through targeted campaigns and integration of sleep health insights within the app 
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to foster greater awareness and adoption of healthy sleep practices. 
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